

Machining force co-simulation for self-aware machine tools

Joshua Tarbutton
UNC Charlotte

Industrial Need and Relevance

- Machining amounts to more that 15% of the value of all manufactured products in all industrialized countries [1]
- Annual labor and overhead costs are estimated to be \$300BN/year in the US (not including materials and tools) [1]
- Industrial machining practice is "open-loop"
- Code is sent to the machine and operators watch the machine's behavior
- Machine tools are not aware of:
 - Forces experienced by the tool
 - Dynamic stability
 (Tony Schmitz Talk Chatter Avoidance in Machining)
 - Tool wear
 - Opportunities to optimize their own performance
- Roombas have more intelligence

Project Objective

- Explore how volumetric (digital)
 vs surface representations of
 parts enable advanced machine
 tool awareness, tool path
 automation, force analysis and
 machining dynamics during
 machining.
- Related Objective: Explore how digital data generated by 3D scanning can be used to generate tool paths for machining castings and weldments with form variations.

Machine tool was not aware that it was on fire.

Approach/Methodology

1D Data Revolution

Digital

Analog

2D Data Revolution Pixels

3D Data Revolution

Approach/Methodology

Voxelize the workpiece, tool and stock

Voxelized Tool Path

Refine the tool-path

Edge

Detect the engagement of tool and work-piece

Rotation Angle (degree)

Shearing cutting force coefficients constants 500 Experimental Data Calculate point by point Cutting forces

Two flute Flat-end mill

Four flute ball-end mill

Cutting Tools

Results

Work-piece Material

304 Stainless Steel

Results

Automatically Generated Tool Path Simple CAM tool path using ESPRIT

Total machining time is about 6 min

Total machining time is 18 min

Next Steps

- 1. Use the digital machining force model to simulate a healthy or "expected" tool path.
- 2. Use the force model to simulate unhealthy or "unexpected" tool path problems that the machine is unaware of such as edge and flank wear, chatter, edge breaking, a chipped or sheared tool and related surface quality to train a machine learning/AI model.
- 3. Instrument the machine to relate measured parameters to healthy simulated tool path.
- 4. While machining, co-simulate expected machining forces and relate these expected forces to variables that can be measured during machining.
- 5. Make the machine aware of **online** differences between expected forces from a healthy cosimulation and measured parameters during machining.

