

Sequential Robotic Task Learning From Demonstrations

Momotaz Begum
Cognitive Assistive Robotics Lab (CARL)
Computer Science
University of New Hampshire

Project Objective

Learning from Demonstrations (LfD)

A <u>lay user</u>
demonstrates
the task/ a concept

The robot observes, asks 'good' questions and learn

Industrial Need and Relevance

What does that mean for Industries?

Collaborative Robots (Cobots)

Industrial Need and Relevance

How do you teach a cobot a new task?

Robust learning of sequential task using a dynamic systems based approach

Phase space transition function (PSTF)

A second order conservative dynamic system that always reaches a phase space state (position, velocity) from a given initial state

Approach/Methodology

PSTF based approximation of task trajectory

Demonstrated trajectory

 $\ddot{x} - x$ projection of the Phase Space Curve (PSC)

PSTFs approximating the PSC

Approach/Methodology

$$\ddot{x} = \begin{cases} k_n x + c_n - T\dot{x}(t_E - t_e) & \dot{x} \ge \frac{x_n - x_c}{|x_n - x_c|} \\ m & \dot{x} < \frac{x_n - x_c}{|x_n - x_c|} \\ \frac{-\dot{x}_c^2}{2(x_{ob} - x_c)} & CD \end{cases}$$

 k_n : The slope of the n-th PSTF; c_n : A constant that satisfies the velocity boundary condition T: A time interval, currently hand picked for DOF synchronization x_c , $\dot{x_c}$: Position and velocity at the Current time; m: A constant acceleration t_E : The time to execute one DOF of the trajectory t_E : a flag signaling obstacle on the planned trajectory

Ref: Paul Gesel, M. Begum, D. LaRoche, Learning Motion Trajectories from Phase Space Analysis of the Demonstrations, submitted to ICRA 2019

Approach/Methodology

- PSTFs are determined in such a way that the demonstrated trajectory
 - √ is accurately reproduced
 - √ is stable
 - ✓ can be adapted to new goal and start positions
 - ✓ can avoid unplanned obstacle
 - ✓ can synchronize multiple DOFs under perturbation

